PII: S0040-4039(97)00394-8 ## AN ENANTIOSPECIFIC NITRONE CYCLOADDITION ROUTE TO 3-HYDROXY-2-AZETIDINONES Amit Basak^{*}, Hassam M. M. Bdour and Gautam Bhattacharya Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, INDIA. Abstract: 4-Aryl or heteroaryl 3-methylene β -lactams 2a-2c underwenthighly stereospecific cycloaddition with various nitrones 3a-3c. The method offers an enantiospecific route to 3-hydroxy- β -lactams. © 1997 Published by Elsevier Science Ltd. 3-Hydroxy or 3-alkoxyazetidin-2-one moiety, representing an efficient carboxylate mimic¹, is present in several monobactams such as Sulphazecin², Tabtoxin and related microbial products³. Design of substrates incorporating such entities is also a recent topic of interest⁴. Thus construction of such structural units would be useful and, indeed, several synthetic approaches have been reported⁵. However, none of these methods addressed the problem of making such units in enantiomerically pure forms. Herein we report our attempt to reach that goal. Previously Baldwin et al 5a reported the nitrone cycloaddition route to 3-hydroxy- β -lactams. The addition was highly regiospecific; however due to rapid equilibration of E and Z nitrones, a mixture of diastereomeric products was obtained (Scheme 1). We reasoned that by keeping a substituent at C-4 we might be able to add stereoselectively to the cycloaddition which would ultimately pave the way towards enantiomerically pure products. With the above intention, we prepared several C-4 substituted methylene β -lactams 2a-2c in racemic forms starting from the corresponding mesylates 1a-1c by a DBU-promoted elimination. The alkenyl β -lactams 2a-2c were then subjected to cycloaddition conditions (benzene/toluene, reflux, argon), along with various nitrones 3a-3c. The addition products (Scheme 2), the spiro β -lactams 4a-4e, were isolated pure by column chromatography followed by crystallization. As revealed in Table 1, the reaction proceeded with a high degree of regio and stereoselectivity, with the nitrone approaching the dipolarophile from a face opposite to that of the C-4 substituent. Moreover, the cycloaddition showed diastereofacial selectivity with respect to the dipolar component as shown by the formation of practically a single product. stereochemistry at C-3 was established by the absence of any NOE enhancement for the signals at ~8 2.5 and ~3.1 for the methylene hydrogens when the C-4 hydrogen was irradiated. The stereochemistry at C-7 has been tentatively assigned as shown (structure 4a-4e) which is based on the favourable secondary interactions between the orbitals of the C-aryl ring of the nitrone in the E form and the oxygen of the carbonyl group of the β -lactam (Figure 1). The various cycloadducts underwent smooth hydrogenolysis (H_2-Pd/C) to furnish 3-(2-phenylethyl)-3-hydroxy- 4-substituted β -lactams 5a-5c. Ms 0 Ph DBU $$\frac{R^1}{0}$$ Ph $\frac{3a-3c}{0}$ Ph $\frac{3a-3c}{0}$ Ph $\frac{1}{2a-2c}$ Scheme 2 ## Scheme 3 The methodology was repeated starting from enantiomerically pure (3S, 4R)-3-hydroxymethyl-4-furyl azetidinone⁷. There was no loss of stereochemical integrity during the entire procedure as revealed by the formation of essentially enantiomerically pure 3-hydroxy β -lactam 5a⁸, confirmed by ¹H NMR in the presence of chiral shift reagent⁹. Table 1 | Substituents | ß – Lactam | Nitrone | Cycloadduct
(% yield) | Hydrogenolysed
product
(% yield) | |---|------------|---------|--------------------------|--| | $R^1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $R^2 = Ph$ | 2a | 3а | 4a (89) | Sa (95) | | $R^1 = R^2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | 2a | 3 b | 4b(93) | | | $R^1 = \bigcup_{0}^{1} R^2 = \bigcirc$ | 2a | 3с | 4c (72)ª | 5b(93) | | $R^1 = \bigcup_{S} R^2 = \bigcirc$ | 2 b | 3c | 4d (74) ^a | 5c (92) | | R ¹ = R ² = Ph | 2¢ | 3a | 4e (91) | | a Isomeric cycloadducts were produced to the extent of ~15% Acknowledgements: Author AB thanks DST, Government of India for funding. GB thanks CSIR for fellowship. ## References: - Sinden, S. L.; Durbin, R. D. *Nature* 1968, 219, 379. Unkefer, C. J.; London, R. E.; Durbin, R. D.; Uchytil, T. F.; Langston Unkefer J. Biol. Chem. 1987, 262, 4993. Meek, T. D.; Villafranca, J. V. 1. Biochemistry 1980, 19, 5513. - Imada, A.; Kitano, K.; Kintata, K.; Muroi, M.; Asai, M. Nature 1981, 289, 590. 2. - 3. Stewart, W. W. Nature 1971, 229, 174. - Greenlec, W. J.; Springer, J. P.; Patchett, A. A. J. Med. Chem. 4. 1989, 32, 165. - (a) Baldwin, J. E.; Otsuka, M.; Wallace, P. M. Tetrahedron 1986, 42, 3097; (b) J. Chem. Soc. Chem. Commun. 1985, 1549; (c) Lee, D. L.; Rapoport, H. J. Org. Chem. 1975, 40, 3491; (d) Dolle, R. E.; Hughes, M. J.; Li, Chun-Sing; Kruse, L. I. J. Chem. Soc. Chem. Commun. 1989, 1448; (e) Ogilvie, W. W.; Durst, T. Can. J. Chem. 1988, 66, 304. - Banerjee, A.; Basu, S. Tetrahedron 1992, 48, 3335. 6. - 7. Basak, A.; Mahato, T. K.; Bhattacharya, G.; Mukherjee, B. - Tetrahedron Lett. (in press). Selected Spectral data: For (+)2a $\delta_{\rm H}$ 5.33 (1H, bs), 5.49 (1H, bs), 5.93 (1H, bs), 6.39 (1H, m), 6.45 (1H, d, J = 3.7 Hz), 7.05 7.85 (6H, m), $[\alpha]_{\rm D}^{28}$ + 11.6° (C 0.62, CHCl₃). For (+)4a $\delta_{\rm H}$ 2.49 (1H, dd, J = 5.4, 13.2 Hz), 3.01 (1H, dd, J = 6.1, 13.2 Hz), 4.82 (1H, dd, J = 5.4, 6.1 Hz), 5.23 (1H, s), 6.02 (1H, d, J = 3.2 Hz), 6.36 (1H, dd, J = 2.0, 3.2 Hz), 7.0 7.63 (16H, m), $[\alpha]_{\rm D}^{28}$ + 71.3° (2.01) For (+)5a $\delta_{\rm H}$ 1 93-2 03 (2H, m), 2.29-2.44 (1H, 8. (C 0.16, CHCl₃). For (+)5a δ_H 1.93-2.03 (2H, m), 2.29-2.44 (1H, m), 2.76-2.88 (1H, m), 5.06 (1H, s), 6.31 (2H, s), 6.98-7.45 (11H, m); $[\alpha]_D^{28}$ + 22.1° (C 0.19, CHCl₃). - Fraser, R. R.; Petit, M. A.; Saunders, J. K. J. Chem. Soc. Chem. 9. Commun. 1971, 1450. (Received in UK 10 January 1997; revised 26 February 1997; accepted 28 February 1997)